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The special and reference literature contains dozens of formulas for calculating the 
thermal conductivity of mixtures from data on their components. Among them are empirical 
correlations chosen for specific classes of mixtures and theoretical relations obtained with 
the use of fairly broad assumptions. Due to their construction, the latter should offer 
more possibilities for approximation. Which of these formulas should be given preference 
for calculating the properties of mixtures that have not yet been studied or have been exam- 
ined only with a narrow compositional range? There is still no satisfactory answer to this 
question. There are also no quidelines that, if not permitting selection of the best theo- 
retical relation, at least help compare the many variants that have been proposed.. 

The goal of the present investigation is to establish the general conditions that should 
be satisfied by formulas used to calculate the thermal conductivity of homogeneous mixtures 
within a broad range of compositions. We also want to construct a parametric class of func- 
tions for correlations between the thermal conductivities of homogeneous binary and multi- 
component mixtures and their compositions. The theoretical results are substantiated by ex- 
perimental data. 

Two-Component Mixtures. We will consider a mixture homogeneous if its thermal conduc- 
tivity for any fixed composition is independent of the method by which the mixture is ob- 
tained, i.e., whether the first component is added to the second or vice versa, whether or 
not two identical two-component mixtures are prepared from different batches of the same com- 
ponents, etc. All of the subsequent arguments will pertain only to such mixtures. 

Let hE, At, ~2 be the thermal conductivities of a two-component mixture and its compo- 
nents. The fractional concentration of the components will be designated as ~i and @~. It 
is unimportant for the sake of subsequent discussion whether these concentrations are deter- 
mined in the form of volume, mass, or mole fractions. It is important only that they satisfy 
the equality ~1 ~ % = I. We write the sought relation in the form of the system 

~ = F ( ~ .  ~2, ~1, ~2), % § % = t. ( 1 )  

In order to determine the general properties that must be satisfied by the function F 
and its derivatives, we will assume that it is completely dependent on the above variables 
and is a physical relation which can be studied by dimensional analysis [i]. It follows 
from this assumption that the function F cannot include dimensional coefficients. Despite 
the obviousness of this condition, it is violated fairly often when the function F is found 
on the basis of approximation of empirical data. An example of this is the George-Kouts 
theoretical formula [2], the exponents of which contain two dimensional constants. 

We will henceforth assume that the structure of Eq. (i) depends not only on the list of 
variables, but also on the order in which they are listed. In accordance with this, writing 
F(~2, %1, %, ~i) means that this function is obtained from the original function F(~I, ~, ~i, 92) 
by permutation of the variables ~l and %2 in the latter. If such a permutation leaves the 
function unchanged, that indicates that the function has the property of evenness relative 
to the given permutation. If the permutation changes the sign of the function, then the lat- 
ter will be considered odd in relation to this permutation. 

To establish whether a function F is even or odd, we state the following obvious hypo- 
thesis: a sought function of the form (i) must not depend on the order of enumeration of 
the components of the mixture. Thus, Eq. (i) should remain valid with a relabeling of the 
components. This in turn means that the function F will be even relative to a simultaneous 
permutation of its variables %1, %2 and ~, %. In other words, the function F should sat- 
isfy the equality 

F(~, s ~1, ~2)= F(s ~,, ~2, ~). (2) 
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Since the structure of F is independent of the relative magnitudes of the quantities hi 
and %2, then (i) will also be valid for hi = %2 = ~. Physically, this can be likened to a 
situation in which the resulting mixture is prepared from two parts of the same substance. 
To distinguish between these parts, let us suppose that they are marked with an inert dye. 
For this mixture, naturally, the value of %Z will be independent of the ratio of the compo- 
nents. This is equivalent to satisfaction of the equality 

x = F(~, ~, 9~, 9~). (3) 

Along with the properties noted above, the function F should satisfy the following ob- 
vious equalities. These equalities can be regarded as limit properties of the function as 
% (or 95) approaches zero or unity: 

%i = F(s %5, i ,  0), ~2 = F(kl, s 0, l). (4) 

We begin our study of the properties of an arbitrary function F as follows. Let %i < 
%2 and the function F change monotonically with a change in the variable 95. Then for any 
component ratio an increase in the fraction of the second component will lead to an increase 
in %Z. If %i > ~2, then an increase in 95 will lead to a decrease in %Z" In mathematical 
form, this fact can be represented in the form of the following inequalities 

I> 00 at ~i < ~z' 
O F (~1' ~2' i -- 95' 95) -- at ~i = %2," (5) 

or 

> 0 at �9 ~1 < ~2' 

0(~I < 0 at ~i > ZS" 

If the function F is not monotonic over the entire range of 95 (or 9~), then it can be 
stated that (5) will always be valid in the neighborhood of the poin t 95 = 0 (or % = 0). 

For monotonically increasing (decreasing) functions, it follows from inequalities (5) 
that the derivative of F will always contain a multiplier which depends only on ~i and 12. 
The sign of this multiplier will be determined by the relative magnitude of these quantities, 
in accordance with (5). Since 91 is expressed through 95 and vice versa, one of these vari- 
ables can always be eliminated from the above relations. Making such an elimination and in- 
troducing new functional relations, we rewrite Eq. (i) in the form ~z = F(Zl, ~2, 1--95, 95)----- 
fl(~l, %2, 92) or ~z = F(kI, ks, 9i, i --gi)-----F~(k1, ~2. 9i)- The functions F i and F 2 must satisfy 
the equalities f1(k 1, Z 2, 1--91) ~ f2(~ I, ~5, 91), fi(%i, %2, 92) = F2(%1, ks, i --92). The property of 
evenness F, written in the form (2), will for F I and F 2 correspond to the equalities FI(% I, %5, 

95) = F1(~5, l l ,  I - -  92), Fs(~*, t5, 91) = F2(Zs, t l ,  I -- 91)- 

The c o n d i t i o n  o f  t h e  i n d e p e n d e n c e  o f  hZ o f  t h e  r a t i o  o f  t h e  components  when l z  = 12 = 
~, e x p r e s s e d  by ( 3 ) ,  w i l l  f o r  Fz and F2 have  t h e  form ~ = F,(~, l ,  95) = F2(t, t ,  9,). The l i m i t  
p r o p e r t i e s  (4 )  o f  t h e  f u n c t i o n  F w i l l  be found  f rom t h e  f o l l o w i n g  e x p r e s s i o n s  f o r  Fz and F 2 

k~ = F~(k~, ~2, 0 ) =  Fs(k~, ~ ,  l),  k5 = F~(k,, ks, i ) =  F2(k ,, Z2, 0). ( 6 )  

We c h e c k e d  t h e  26 f o r m u l a s  e n c o u n t e r e d  most  o f t e n  in  t h e  l i t e r a t u r e  f o r  c a l c u l a t i n g  t h e  
thermal conductivities of homogeneous mixtures. All of them satisfy limit properties (4) 
and five of them satisfy parity property (2), but only the following three satisfy property 
(5): 

[ %~, + %~ ],/5 ~ = [~,z~ + 92~],tr %z = ~i;~2 ~iL2 + qos~ i 
(7) 

(r is a coefficient). The first two formulas were proposed by Lichtenecker [3], while the 
third was proposed by Vredeveld [2]. It is usually referred to as the generalized additivity 
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formula. Which of these formulas should be given preference in evaluating the thermal con- 
ductivity of a new mixture? How should they be modified so as to construct new correlations? 

To answer these questions, let us return to Eq. (1) and analyze the dimensionality of 
the sought relation. Assuming that it is differentiable, it can be written in differentia] 
as well as integral form. In this case, the constants 11 and 12, entering explicitly into 
integral relation (i), can be present only in the boundary conditions of the differential 
equation. They can enter the equation itself only as a ratio corresponding to a dimension- 
less constant. Taking all this into account, we write the differential form of the sought 
relation as* 

r  ~, ~, ~ / h ) =  O, ~(0) - ~ ,  ~ ( t ) :  ~. (8) 

Changing over in Eq. (8) to dimensionless variables (of which there will be three: I~/IZ, 
~ , and I~/i~) and solving it for the first of them, we write the result in the form of the 
differential equation 

>,~o% /kx~ % '  },=(O)=h, },z(l)=},~, 

Solving this equation with the initial condition IZ(0) = 1: and using the equality IE(]) = 
12 , to normalize the function f(I:/12, ~2) we obtain 

{i )}i(  ~.--:- = exp  / qo 2 , - - ,  _ = 
k )h ~': / '%: 

(9) 

In order to parameterize the function f, we expand it into a series in a certain system 
of functions ~i(~) which are orthogonal on the interval [0, i]. We thus obtain 

/ ~--:-, % =a o l + i = ~ a ~ i ( % )  , % = l n - - , ~ . ~  % ( ~ ) = 1 .  (lo) 

In the general case, the coefficients ~i are functions of the ratio 12/I I such that 
parity property (2) is satisfied when (i0) is substituted into (9). Since we are examining 
the construction of approximating relations for specific mixtures, we will henceforth assume 
that the coefficients ~i are constants determined experimentally. 

With allowance for (i0), we reduce sought relation (9) to the form 

-~I ---- (~-1);~z 12 <c~+i~la*A(~2) , "  �9 
gZ 

I~ (q ' j  = j" ~ (qJ dq~. 
0 

(ii) 

It is evident from this that at n = 0 the relation just obtained coincides with the 
first formula of (7). As the functions ~i(~), it is convenient to use polynomial functions 
that are orthogonal on the interval [0, i]. Considering that ~0(fp) = I, we write two such 
functions in the following form* 

~,(qO = t - -  2~,  %,(~) = I - -  6~ § ~q~. ( 1 2 )  

If necessary, subsequent polynomials can be constructed on the basis of established 
orthogonalization methods [4]. However, we were not able to find experimental data which - 
with allowance for its accuracy -would have required the use of approximation (ii) with 
n_> 2. 

*If we take ~2 instead of E,. then as the boundary conditions we need to use Iz(O) = i2, 
is(l) : 11 [see (6)]. 
*The functions ~i(~) cannot be normalized in this case because they are multiplied by unknown 
coefficients ~i" 
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Fig. 1 

TABLE 1 

Type of mixture and its compo- 
nents 

Normal organic-liquids: :cyclo- 
hexane-benzene [ 5 ] 

A~sociated organic liquids" 
methyl alcohol-butyl alco~tol [5] 

Aqueous alcohol solutions: ethy ! 
alcoho i-~. ater [ 6 ] 

Inorganic liquids with water: 
orthophosphoric acid-water [ 7 ] 

Straight emulsions : coolant 
"Ukrinol-l" in water [8] 

Reverse emulsions: emulsion of 
water in oil from the Karatyub- 
insk deposit [9] 

Z, I X2 

w/(m'K) 

0,218 0,t45 

0,200 0,151 

0,167 0,603 

0.442 0.603 

0.160 0,603 

0,603 0,147 

(P2 

0-- -~  

O--i 

O--i 

0-- t  

O--0,3 

0--0.5 

O~ t 

0 

0 

0 
0,3 

0 
--t,07 

0 

6,% 

1,6 

0,9 

t3,5 
3,4 

6,8 
2,0 

t,3 

1,2 

The integrals in (ii) corresponding to functions (12) can be written either as functions 
just of concentration % or in the form of mixed functions of % and %. For practical cal- 
culations, the latter functions are more convenient: 

1 1 = ~ 2 - - f f ~ = % % ,  1 2 = % - - 3 ~  + 2 q , ~ = % % ( % - - ~ 2 ) ,  % + % =  t .  

We used 20 different mixtures to check the expediency of using the above class of para- 
metric relations to construct theoretical formulas. The experimental data on the parameters 
of the mixtures was taken from different literature sources. The most characteristic of these 
results are shown in Table 1 and Fig. 1 (points 1 for cyclohexane-benzene [5]; 2 - methyl al- 
cohol-butyl alcohol [5]; 3 - ethyl alcohol-water [6]; 4 - glycerin-water [6]; 5 - orthophos- 
phoric acid-water [7]; 6 - coolant "Ukrinol-l" in water [8]; 7 - emulsion of water in oil 
from the Karatyubinsk deposit [9]). In Table i, ~ represents the relative error between the 
experimental data and approximate relation (ii). 

The unknown coefficients ~i and ~2 were determined by the least squares method. If only 
one coefficient ~z was found, it was calculated from the formula 

h 
b I 

(zl = - -  bt = Z Y~ (q/2J)) ' 
a l l  ~ ] = 1  

h l n - -  

a n =  E I~ ( r ($) ), y O ) =  X' 
5=1 In 

Here, the superscript j determines the serial number of the experimental point, characterized 

by the coordinates hE(J) and ~$) In the case of the determination of two coefficients ~i 
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TABLE 2 

o I o 0 --0,093 
O 4,6 
0 2,3 

and ~2, they are calculated from the formulas 

b~a22 -- b2a12 al lb 2 --- al2b ! 
CX] A ' 0~2 A 

L~ 111122 Q22 ~ = 
J = l  

a 1 2 =  E II((~IJ)):2((~IJ)), 
. i=l  

h 

$=1 

An analysis of the results of the calculations shows that the use of just one term of 
the series in the exponent of the right side of (ii) (the Lichtenecker formula) makes it pos- 
sible to obtain satisfactorily accurate results only for straight and reverse emulsions and 
mixtures in which the components have similar thermal conductivities. We should also point 
out that the sign of the coefficient el is different for different mixtures - which means 
that a correction for the sign should be introduced into the Lichtenecker formula. 

Multicomponent Mixtures. To examine the procedure for the construction of approximate 
relations for the thermal conductivities of homogeneous multicomponent mixtures, we will use 
the example of a three-component mixture with the component concentrations %3, %~, ~3 and 
the corresponding thermal conductivities hl, ~2, %3- The second digit of the subscript de- 
notes the quantity of the given component in the mixture. If the components %~ and ~ (in 
the general case, any two components) are hypothetically combined into one component, then 
the mixture can be regarded as a two-component mixture with the component concentrations 
(%3 + %3), %3 and the corresponding thermal conductivities ~i* and X3. We calculate hi* from 
Eq. (ii) with the condition that 

We also obtain the desired result from (ii) by assuming that in this equation 

%1=~, %2= ~3, %=%3+%v %=%" 

The result of using the above-described procedure to construct an approximate relation for a 
homogeneous three-component mixture can be formally written in the form 

+ %3%3 (~I + ~o ~13-%3~. 
(q913 ~- ~23) 9" ,, ~ ~13 T ~923)~ 

~ = %3 § (%~ + 92=)%3[PI + I~.,(91= + ~o=~ -+- %~)}. 

(13) 

The coefficients ~i, ~2 and ~i, ~2 are determined from the approximation of the thermal con- 
ductivities of binary mixtures of components with the thermal conductivities hi, h 2 and hi*~ 
X3, respectively. 

As an example, we calculated the approximate relation for the thermal conductivity of a 
ternary mixture of isopropyl alcohol, isobutyl alcohol, and water. The calculations were 
based on the data in [i0]. The concentrations of the initial components were changed within 
the ranges (0-0.46), (0-0.43), (0-0.64), respectively, while the thermal conductivities of 
these components were equal to h I = 0.140, h 2 = 0.153, h 3 = 0.613. Table 2 shows theoretical 
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values of ~i, ~2, 61, ~2 found from Eq. (13) and the corresponding maximum errors of the 
approximation 6. 

The case when ~i = ~2 = ~I = 62 = 0 corresponds to approximation of the binary inter- 
mediate components on the basis of the Lichtenecker formula (7). 
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DYNAMIC CONTACT PROBLEM FOR A TWO-LAYER HALF-SPACE WITH A 

SPHERICAL CAVITY 

A. A. Lyapin, A. N. Rumyantsev, and M. G. Seleznev UDC 539.3:534.1 

This article examines the problem of exciting steady harmonic vibrations in an elastic 
two-layer half-space with a spherical cavity. The vibrations are excited by impact of a 
rigid die against the plane surface. The deformation of the medium is presumed to be axisym- 
metric. The boundary-value problem is solved in two steps. In the first step, we study the 
problem of the excitation of steady harmonic vibrations in an elastic two-layer half-space 
with a deep-set spherical cavity. Here, the vibrations are excited by a weightless rigid 
circular die with a flat base. With allowance for the radiation conditions, the boundary- 
value problem is reduced to a system of integrodifferential equations. These equations are 
studied by asymptotic methods and the method of approximate factorization of matrix functions. 
With the assumption that the amplitude of the load acting on the die is constant, we find 
the distribution law for the contact stresses and the amplitude-frequency characteristics of 
points of the base of the die. In the second step, we consider the effect of the mass of the 
die by examining the equation of its motion as a rigid mass under the influence of an assigned 
external load and the reaction of its complex elastic base. The reaction of the base is 
found from the first step for the given frequency range. 

Results are presented from study of the basic laws governing the behavior of the ampli- 
tude-frequency characteristics in relation to the mass of the die and the location of the 
cavity in the medium for different ratios of the stiffnesses of the layer and the half-space. 

Rostov-on-Don. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
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